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ABSTRACT: Several quantitative descriptors of polymer
topology—the Wiener number W, complexity index K, and
the index of 3-starness S—were shown to relate well the
measured rheological properties of linear and 3-arm star
monodisperse polyethylene samples to their structure. The
complexity index K (the substructure count) provided sin-
gle-variable models with correlation coefficients r ranging
from 0.95 to 0.98 for zero-shear viscosity, activation energy,
and the parameters � and � from the Cross equation, which
describes the shape of the viscosity/shear rate curve. The
regression models with two and three topological variables
were characterized by r � 0.99 and low standard deviations.

The models were used to predict the values of these rheo-
logical parameters for branched monodisperse polyethyl-
enes not yet synthesized, thus indicating the potential of this
topology-based methodology for industrial applications.
The study also presents a statistical confirmation for the
much stronger effect that long-chain branching has on shear
rheology than that of molecular weight. © 2003 Wiley Period-
icals, Inc. J Appl Polym Sci 90: 2648–2656, 2003

Key words: rheology; polymer topology; linear and star
polyethylenes; structure–property relations; branched

INTRODUCTION

The effect of branching on the rheology of polymer
melts and solutions has been extensively studied over
the past 15 years.1–11 GPC-MALLS and 13C-NMR tech-
niques have been used to assess the degree of branch-
ing in commercial polymers,12,13 although they cannot
yet describe satisfactorily structural details of
branched polymers. Monte Carlo simulations14 have
also been used to deconvolute broad molecular weight
distributions (MWDs) into a series of distributions
corresponding to a given number of branches. It has
been shown that it is not only the number of branches
that influences polymer rheology but also the branch
length and their position along the backbone. On the
other hand, broad MWD polymers exhibit properties
somewhat similar to long-chain branching (e.g., the
recoverable compliance Je

0 increases with MWD), and
the two effects are difficult to separate. However, an-
ionic polymerization has made it possible to synthe-
size nearly monodisperse molecular weight polymers
and well-defined macromolecular architectures, pav-
ing the way to model quantitative structure–property
relationships (QSPR). The effective QSPR analysis of
branched polymers requires descriptors of polymer

structure that go beyond the number of branches or
the degree of branching.15,16 It was previously
shown17 that at a given degree of branching the im-
mense variety of architectures possible in a real poly-
mer shifts polymer properties over a wide range of
values.

Graph theory18,19 could be used to describe struc-
tural diversity in branched polymers by offering quan-
titative descriptors, called topological indices. Over the
last 25 years, molecular branching has been the subject
of intensive studies, and topological indices have been
shown to mirror even the subtlest branching pat-
terns.20–22 Some polymer physical properties have
been correlated with topological descriptors.23–28 The
comparative analysis of topological indices as tools for
evaluating branching complexity29 has shown the
Wiener number W30 and complexity index K31–35 to be
some of the best descriptors. In addition, they are
relatively simple to calculate and have a clear physical
interpretation.

In the first part of this study,36 we performed a
topological/complexity analysis of branching in poly-
mers and derived formulas for the Wiener number W
and complexity index K for different classes of
branched polymers. The basic patterns of polymer
structure were identified and quantitatively character-
ized using these descriptors. The second paper in the
series37 reexamined the Zimm–Stockmayer theory of
dimension of polymers. It introduced the concept for a
topological radius of a molecule and showed the di-
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rect relation between the Wiener index, the mean
square radius of gyration, and zero-shear viscosity. In
the present study, the topological descriptors were
applied to the modeling of some rheological proper-
ties from an available set of monodisperse polyethyl-
ene (PE) samples. This is part of a more general ap-
proach, searching for specific combinations of topo-
logical and complexity parameters that would
determine optimal ranges of rheological and mechan-
ical polymer properties for industrial purposes. Such
an approach might be regarded as a methodology for
optimizing the design of branched polyolefins pro-
ceeding from predictions based on topology–property
models. The experience accumulated from series of
monodisperse species could help in the search for
topology–property relationships to describe broad-
distribution commercial polyolefins. They can also
form the basis for structure interpretation and predic-
tion, once the relevant topological and complexity
descriptors are identified and applied.

EXPERIMENTAL

Training set

The training set consisted of experimental data for 13
monodisperse PEs: six linear and seven starlike struc-
tures. They were treated both in two separate subsets
of linear and star polymers, given their different mo-
lecular dynamics, and in a joint set because mixtures
of linear and star polyolefins are common in industrial
practice. The star-type PE was regarded to be com-
posed of a backbone (b) and a single arm (a); the
position of the latter on the backbone is determined by
the length of the shorter chain (c).

These model polymers have precisely controlled
branching structures. They were prepared by Hadji-
christidis et al.11 through the hydrogenation of anion-
ically synthesized polybutadienes. The synthetic
method does not allow for side reactions that would
change molecular weight and structure. The number
of branches per molecule was determined by use of
13C- and 1H-NMR, and by size exclusion chromatog-
raphy (SEC), whereas molecular weights were mea-
sured by membrane osmometry, vapor phase osmom-
etry, light scattering, and SEC.11 The structural infor-
mation on the model polymers examined by us is
detailed in Table I. The molecular weight of the poly-
mers is in the range of 100,000 to 250,000 Da.

Table I also presents the rheological properties mod-
eled in this study. Included here are zero-shear vis-
cosity �0, the branching index g� (the ratio of intrinsic
viscosity of the branched polymer and that of the
linear polymer of the same molecular weight), and the
activation energy of viscous flow Ea, used as an indi-
cation of the processability of polymer melts. Graess-
ley38 related an increase in Ea to the presence of
branching in PEs. (It should be mentioned that the
difference in the activation energy is unique to some
PEs, and the relation with the topological parameters

TABLE I
Experimental Data for the Examined Rheological Properties of 13 Monodisperse Linear and 3-Arm Star Polyethylenes

Polymer

Structural variable

g�

Rheological property

Mb � 10�3

(backbone)
Ma � 10�3

(arm)
Mc � 10�3

(end)
Ea

(kcal/mol)
�0

(Pa � s)
�

(s) �

Linear PE
1 101 0 0 0.92 7.26 2.24 � 103 9.15 � 10�4 1.31
2 134 0 0 0.98 6.68 6.58 � 103 3.68 � 10�3 1.41
3 135 0 0 1.00 7.07 6.89 � 103 3.90 � 10�3 1.42
4 151 0 0 1.00 6.89 1.01 � 104 4.93 � 10�3 1.39
5 167 0 0 1.05 7.13 2.85 � 104 1.38 � 10�2 1.19
6 244 0 0 1.00 7.04 4.93 � 104 3.00 � 10�2 1.14

3-Arm star PE
7 100 5 50 1.04 14.3 9.25 � 105 1.83 � 100 0.908
8 100 25 50 0.84 16.3 2.28 � 106 3.09 � 101 0.813
9 100 50 50 0.72 17.0 5.90 � 106 3.71 � 101 0.834

10 100 40 40 0.83 16.8 6.42 � 106 6.23 � 101 0.829
11 100 15 50 0.82 13.1 9.28 � 106 9.89 � 101 0.848
12 100 15 50 0.82 14.9 1.68 � 107 1.58 � 102 0.852
13 130 65 65 0.76 18.1 3.90 � 108 2.63 � 103 0.860
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found in our study cannot be extended beyond this
class of polymers.) The other two rheological param-
eters examined are the characteristic time � and the
power law index � from the Cross equation39:

��*���� �
�0

1 � ����� (1)

which describes the dependency of the absolute value
of complex viscosity ��*(�)� on angular frequency �
(rad/s). The oscillatory shear rheology data were ob-
tained, as described in the study by Hadjichristidis et
al.,11 using a Rheometrics (Amherst, MA) RMS-800
instrument. In each case a single sample was run
through a melt temperature range of 150 to 300°C,
with master curves fit to a reference temperature of
190°C.40 The activation energy of viscous flow Ea was
determined proceeding from the time–temperature
superposition principle and by assuming Arrhenius-
type behavior:

aT �
��T�

��T0�
� Be

Ea

R � 1
T �

1
T0
� (2)

The quality of the data was evaluated using stan-
dard statistical criteria. The overall conclusion was
that the training set is limited with respect to the
number of monodisperse polymers and the ranges of
the properties under examination. Nevertheless, a
positive assessment of the data set was inferred from
the fact that the coupling between the zero-shear vis-
cosity �0 and the � parameter was well reflected by
their intercorrelation with r � 0.96. The activation
energy Ea was also shown to correlate well with �0 (r
� 0.93) and � (r � 0.90).

The descriptors of polymer branching

From a chemical point of view graphs are structural
formulas in which the atomic symbols are replaced by
points called vertices. Bonds are preserved as lines
connecting the vertices and are called edges. Graphs
thus preserve the useful information contained in
structural formulae and, in addition, they provide the
opportunity to use the powerful mathematical formal-
ism of graph theory. The topological structure of a
molecule is quantified by using the so-called topologi-
cal index, a number that is uniquely derived from the
respective graph. A molecular graph is a hydrogen-
depleted (or, rather, hydrogen-implied) one.

Different kinds of polymer graphs can be con-
structed, depending on whether a vertex stands for a
single nonhydrogen atom or for a selected group of
atoms. In this study, we make use of graphs, each
vertex in which stands for a carbon atom in the re-
spective PE macromolecule. The Wiener number W

and the complexity index K were selected as topolog-
ical descriptors on the basis of earlier extensive studies
on molecular branching,20–22,28,41 and the successful
use of the Wiener number in structure–property mod-
eling.42

The Wiener30 number W counts the total number of
bonds that separate all pairs of atoms along the short-
est path between them. In a set of isomeric molecules
the largest Wiener number is obtained for the linear
structure, whereas the smallest one characterizes the
most branched starlike structure. More generally, at a
given number of nonhydrogen atoms the Wiener
number decreases with the increase in the number of
branches and their length, as well as with decreasing
spacing (branch–branch distance), and with more cen-
tral branch positioning.20,21 However, W increases
rapidly with molecular size, which is another compo-
nent of molecular complexity. Because of the opposing
trends of increasing with size and decreasing with
complexity, the Wiener number is a very useful tool
for analyzing isomeric compounds. For nonisomeric
species it is used in combination with other topologi-
cal variables or is subjected to different modifications.
In this study, it was also used after being normalized
by dividing by: (1) the total number of carbon atoms n:
W� � W/n; (2) the total number of distances in the
graph n(n � 1)/2: W	 � 2W/n(n � 1); and (3) the
Wiener number Wlin of the unbranched PE having the
same molecular weight: W/Wlin.

The topological complexity index K is defined as the
sum of all substructures into which the overall molec-
ular structure could be decomposed.31–35 In terms of
graph theory, K is the total number of subgraphs in the
molecular graph. This descriptor increases very rap-
idly with both the size of the molecule and the extent
of its branching. For polymers it has to be used either
in a logarithmic form (log K) or normalized by divid-
ing by the value Klin it has for the linear structure with
the same molecular weight (K/Klin). The calculation of
W and K is illustrated below for an asymmetric star
graph having five vertices.

Distances 1: 1–2, 2–3, 2–5, 3–4
Distances 2: 1–3, 1–5, 2–4, 3–5
Distances 3: 1–4, 4–5
The Wiener number W � (4 � 1) 
 (4 � 2) 
 (2 � 3)

� 18
Normalized Wiener number:

W� � 18/5 � 3.6, W	 � �2 � 18�/�5 � 4�

� 1.8, W/Wlin � 18/20 � 0.9
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Subgraphs:

1. vertices: 5 (1, 2, 3, 4, 5)
2. edges: 4 (1–2, 2–3, 3–4, 2–5)
3. two-edge subgraphs: 4 (1–2–3, 2–3–4, 1–2–5,

5–2–3)
4. three-edge subgraphs: 3 (1–2–3–4, 5–2–3–4, 1–2–

3–5)
5. four-edge subgraph: 1 (the entire graph)

Complexity index:

K � 5 � 4 � 4 � 3 � 1 � 17,

K/Klin � 17/15 � 1.133

A third topological index, the starness S, was intro-
duced by us elsewhere36 as a measure for the similar-
ity of an asymmetrical star to the symmetrical one. S
ranges from zero for linear polymers to one for a
symmetrical star. In the singly branched PE the star-
ness is defined as the product of the length of the three
arms A, B, and C, expressed by the number of bonds
(graph edges) eA, eB, and eC in each arm, and normal-
ized by dividing it by the total number of edges E.
Alternatively, one may use the respective molecular
weights MA, MB, MC, and M, which for PEs are ex-
pressed by the number of atoms n by the relation M
� 14n 
 2, where n � E 
 1 and E � eA 
 eB 
 eC.

S �
27eAeBeC

E3 �
27�MA � 16��MB � 16��MC � 16�

�M � 48�3

(3)

For the graph shown above, eA � eB � 1, eC � 2, E � 4,
and S � (27 � 1 � 1 � 2)/43 � 0.843 or 84.3% of
3-starness.

The calculations of the Wiener number and the com-
plexity index of the model linear and star polymers

were performed using eqs. (4) to (7). The formula for
the Wiener number of linear structures was given by
Wiener in terms of the number of carbon atoms n.30

The formulae for complexity index and starness index,
as well as for those for the Wiener number of asym-
metrical starlike graphs, were derived in the first part
of this study. For polymer calculations, the number of
atoms was replaced in eqs. (4) to (7) by the PE molec-
ular weight M � 14n 
 2, and those of the star poly-
mers’ three arms MA, MB, MC:

Wlin �
1
6 n�n � 1��n � 1� �

M3 � 6M2 � 184M � 384
16,464

(4)

Klin �
n�n � 1�

2 �
M2 � 10M � 24

392 (5)

W3-arm star �
n�n � 1��n � 1�

6 � nAnBnC

�
1

16,464 ��M � 2��M � 16��M � 12�

� 6�MA � 2��MB � 2��MC � 2�� (6)

K3-arm star � nAnBnC

�
nA�nA � 1� � nB�nB � 1� � nC�nC � 1�

2

�

�MA � 2��MB � 2��MC � 2�
� 7�MA

2 � MB
2 � MC

2 � 126�MA � MB � MC� � 672
2744

(7)

These topological indices were applied to the study of
13 model polymers as far as their rheological perfor-

TABLE II
Parameters Used in the Modeling of the Training Set of 13 Monodisperse Linear and 3-Arm Star Polyethylenes

No. log MW S
W

(�10�10) W	 W/Wlin log K
K/Klin

(�102)

1 5.004 0 62.57 2405 1 7.415 100
2 5.127 0 14.61 3191 1 7.661 100
3 5.130 0 14.94 3214 1 7.667 100
4 5.179 0 20.91 3595 1 7.765 100
5 5.223 0 28.28 3976 1 7.852 100
6 5.387 0 88.22 5809 1 8.182 100
7 5.021 0.292 6.570 2336 0.934 9.661 163
8 5.097 0.864 9.578 2404 0.808 10.36 573
9 5.176 1 15.93 2775 0.778 10.66 794

10 5.146 0.945 13.16 2632 0.789 10.54 700
11 5.061 0.666 7.863 2331 0.851 10.14 406
12 5.061 0.666 7.863 2331 0.851 10.14 406
13 5.290 1 35.02 3611 0.778 11.00 1033
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mance is concerned. The calculated values of the to-
pological parameters are given in Table II.

RESULTS AND DISCUSSION

Single-variable correlations

The multiple regression analysis was performed with
the package OASIS.43,44 The option used selects the
model with the best statistics (highest correlation co-
efficient r, lowest standard deviation s, and largest
Fischer ratio F, the latter being a measure for the
statistical significance of the regression) after testing
all statistically significant variable combinations.

The single-variable models were studied in detail
(Table III), with the purpose of evaluating the relative
importance of the examined structural descriptors.
Several of these simplest models were obtained with
statistics high enough to allow their application for
practical purposes. High correlation coefficients were
obtained with some of the topological descriptors
(e.g., 0.89 to 0.96 for the W/Wlin models and 0.85 to
0.94 for the models with the index of starness S).

The best results, shown in eqs. (8)–(12) were ob-
tained with the complexity index K, with correlation
coefficients reaching 0.96–0.98 for activation energy
Ea, zero-shear viscosity �0 and the parameters � and �
of the Cross equation,39 and 0.90 for the branching
index g�. The correlation obtained is high, particularly
when taking into account the accuracy of the data in
the training set. The normalized complexity index
K/Klin also performed well, with r � 0.87–0.90.

g� � � 0.106 (0.015)ln� K
Klin

� � 1.49 �0.08) (8)

n � 13, r � 0.902, s � 0.05, F � 48

Ea � 0.183 �0.010)(log K�2 � 3.92 �0.87) (9)

n � 13, r � 0.985, s � 0.86, F � 352

log �0 � 1.151 �0.093)log K � 4.93 �0.86) (10)

n � 13, r � 0.966, s � 0.45, F � 155

log � � 0.0866 �0.0052)(log K�2 � 7.48 �0.46) (11)

n � 13, r � 0.981, s � 0.46, F � 281

� � � 1.568 �0.141)ln(log K� � 4.52 �0.31) (12)

n � 13, r � 0.958, s � 0.075, F � 124

The molecular weight–type variables did not per-
form so well. An extremely low correlation (0.02 to
0.14) was obtained with the total molecular weight for
the examined rheological properties. This result sup-
ports the observations that branching is much more
significant than molecular weight for the rheological
properties of PEs. Another factor contributing to these
unrealistically low values is the grouping together of
linear and branched monodisperse PEs because their
rheology depends on molecular weight in a drastically
different way. Separating the training set into two
subsets of six linear and seven branched PEs produced
considerably stronger property dependency on molec-
ular weight, although it is still weaker than that of the
topological branching parameters log K, W/Wlin,
K/Klin, and S.

log �0 � 3.66 �0.50)log MW � 14.91 �2.60) (13)

n � 6, r � 0.964, s � 0.14, F � 53

log � � 4.00 �0.46)log MW � 22.97 �2.40) (14)

n � 6, r � 0.974, s � 0.13, F � 74

The respective correlation coefficients for the
branched PEs are 0.79 for log �0 and 0.62 for log �. The
slope 3.66 (0.50) of eq. (13) coincides, within the
error limit, to the well-known exponent of 3.4 in the
intrinsic viscosity dependency on molecular weight.
Similarly, the slope of 7.18 (2.50) in eq. (15) for log �0
of the subset of branched PEs

log �0 � 7.18 �2.50)log MW � 29.83 �12.81) (15)

n � 7, r � 0.789, s � 0.56, F � 8.2

TABLE III
Comparison of the Correlation Coefficients of the Single-

Variable Topological Descriptor/Rheological Property
Models of the Examined Monodisperse Polyethylenes

Index g� Ea log �0 log � �

log K 0.81 0.98a 0.97 0.98 0.95
K/Klin 0.89 0.89 0.87 0.87 0.76
W/Wlin 0.90 0.96 0.92 0.94 0.89
S 0.90 0.93 0.85 0.94 0.89
Me 0.75 0.96 0.95 0.96 0.93
Ma 0.85 0.86 0.83 0.82 0.70
Mb 0.52 0.58 0.39 0.45 0.44
W	 0.38 0.49 0.32 0.38 0.39
W� 0.24 0.30 0.13 0.24 0.25
W 0.22 0.28 0.09 0.15 0.13
MW 0.07 0.14 0.05 0.02 0.07
log MW(a)b 0.64 0.14 0.96 0.97 0.67
log MW(b) 0.63 0.84 0.79 0.62 0.26

a The highest correlation coefficient for each property is
given in bold.

b (a) and (b) refer to the two subsets of linear and branched
polyethylene, respectively.
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is within the error limit to the experimental values.
The large uncertainty ranges for the two MW expo-
nents in eqs. (13) and (15) for the viscosity of linear
and branched PEs (0.50 and 2.50, respectively) re-
sult from the very small subsets of six linear and seven
branched polymers in our training set.

It was also of interest to compare the performance of
the topological indices against the theoretical models
showing that viscosity of star-branched molecules de-
pends exponentially on the molecular weight of the
shortest arm Mb. As shown below in the mathemati-
cally equivalent log–log form for the zero-shear vis-
cosity, the complexity index K provides a higher cor-
relation than Mb. The result is further improved in the
next section by use of a combination of topological
descriptors.

log �0 � 1.38 �0.74)log Mb � 0.92 �3.26) (16)

n � 7, r � 0.639, s � 0.70, F � 3.4

log �0 � 1.43 �0.58)log K � 7.82 �5.99) (17)

n � 7, r � 0.741, s � 0.61, F � 6.1

Two- and three-variable correlations

Combining two or three structural parameters im-
proved the structure–property models and increased
their statistical significance, as measured by the Fi-
scher ratio F. The correlation coefficients for three of
the examined five properties reached or exceeded 0.99.
More important, the standard deviations of the calcu-
lated properties, particularly those of the zero-shear
viscosity and the Cross parameter �, were reasonably
small, thus allowing the use of the models for predic-

tive purposes. The best two- or three-variable models
for each of the examined properties are presented
below and illustrated in Figures 1 and 2. In all cases
these are nonlinear models in which logarithmic and
even double logarithmic functions are used, given the
very strong dependency of the topological descriptors
on polymer branching.

log �0 � 12.9 �1.0)ln(log K� � 5.65 (0.61)ln� K
Klin

�
� 52.1 (5.6)ln� W

Wlin
� � 48.46 �3.64) (18)

n � 13, r � 0.997, s � 0.15, F � 470

log � � 15.6 �1.68)ln(log K� � 5.16 (1.04)ln� K
Klin

�
� 46.1 (9.4)ln� W

Wlin
� � 58.02 �6.18) (19)

n � 13, r � 0.995, s � 0.26, F � 298

Ea � � 0.0555 �0.0084�
K

Klin
� 0.0610 �0.0074�W	

� 1.45 �0.18�MW � 12.60 �0.79) (20)

n � 13, r � 0.992, s � 0.70, F � 179

� � � 0.218 �0.019)log K � 0.0044 �0.0014�Mb

� 0.488 �0.152)log W � 1.84 �1.43) (21)

n � 13, r � 0.979, s � 0.06, F � 68

Figure 1 Experimental versus calculated [eq. (18)] values
of zero-shear viscosity of the set of six linear and seven
3-arm star monodisperse polyethylenes.

Figure 2 Experimental versus calculated [eq. (19)] values
of the Cross equation’s characteristic time lambda of the set
of six linear and seven 3-arm star monodisperse polyethyl-
enes.
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g� � 0.582 �0.247)ln(log K�

� 0.199 (0.040)ln� K
Klin

� � 0.71 �0.34) (22)

n � 13, r � 0.945, s � 0.04, F � 41

The obtained models have good predictive power.
We used the models to calculate the rheological prop-
erties of 15 as yet unsynthesized monodisperse 3-arm
star PEs with molecular weights ranging from 90,000
to 180,000. The estimates made are presented in Table
IV.

Additional data analysis was carried out to compare
the performance of the selected topological descrip-
tors against that of the molecular weight of each of the
star arms (parameters included in the dynamic theory
of stars’ viscoelasticity) in reproducing the zero-shear
viscosity of the branched molecules. As shown below,
the replacement of molecular weights with the gener-
alized topological parameters resulted in a fourfold
decrease in the standard deviation:

log �0 � � 4.84 log M1 � 8.66 log M2

� 0.602 log M3 � 12.66 (23)

n � 7, r � 0.898, s � 0.52, F � 4.1

log �0 � 17.67 log K � 37.20�W/Wlin�

� 0.0175�K/Klin� � 196.60 (24)

n � 7, r � 0.994, s � 0.13, F � 78

Neural network models

An additional substantial improvement of the model
statistics resulted from applying the neural network
program “Neural Works Predict.”45 The program
methodology provides an efficient optimization of the
structure–property models but does not produce mod-
els in a classical analytical form. Rather, the applica-
tion produces each model as a code. In Table V, we
compare the statistics of the best linear and nonlinear
models, as produced by the OASIS programs, with
those of the neural network models.

As seen from Table V, the neural network models
show very high correlation, which in all cases is better
than that of the MRA linear and nonlinear models.
Four of the correlation coefficients are within the
range of 0.9993–0.9997. Particularly impressive is the
decrease in the standard deviation, which for g� is
even 10-fold; for log �, more than fourfold; and for Ea

and log �0, more than twofold. All these results were
obtained with the standard Neural Nets version after
an exhaustive testing of the optional parameters of the

TABLE IV
Predicted Rheological Properties of Some Not Yet Synthesized Monodisperse 3-Arm Star Polyethylenesa

No. Mb Ms Ma MW g�
Ea

(kcal/mol)
�0

(Pa � s)
�

(s) �

1 80 40 40 120 0.79 15.8 1.0 � 107 67.6 0.87
2 80 40 25 105 0.82 15.1 5.9 � 106 29 0.84
3 80 40 10 90 0.87 13.9 2.1 � 106 6.0 0.85
4 80 30 30 110 0.81 15.2 6.7 � 106 36 0.86
5 80 30 10 90 0.92 13.8 1.9 � 106 5.4 0.85
6 80 20 20 100 0.89 14.2 3.3 � 106 12 0.87
7 100 50 35 135 0.78 16.0 1.5 � 107 120 0.83
8 100 40 30 130 0.80 15.6 1.2 � 107 84 0.83
9 100 40 20 120 0.84 14.9 7.3 � 106 41 0.83

10 100 40 10 110 0.85 13.8 3.3 � 106 12 0.85
11 100 25 25 125 0.86 14.6 7.1 � 106 39 0.86
12 100 25 10 110 0.97 13.5 2.5 � 106 7.9 0.88
13 130 50 50 180 0.75 17.0 3.7 � 107 550 0.80
14 130 50 35 165 0.78 16.2 2.5 � 107 280 0.79
15 130 50 20 150 0.84 15.0 1.3 � 107 100 0.80

a �0, �, Ea, �, and g� were calculated by eqs. (10), (11), (18), (19), and (20), respectively.

TABLE V
Comparative Statistics of the Best Structure–Property
Neural-Network and Multiple-Regression-Analysis

Models of Linear and 3-Arm Star Monodisperse
Polyethylenes

Property

Neural network
models

MRA models
(OASIS)

r s r s

g� 0.9994 0.004 0.945 0.04
Ea 0.9970 0.348 0.992 0.70
log �0 0.9993 0.062 0.997 0.15
log � 0.9997 0.056 0.995 0.26
� 0.9996 0.058 0.979 0.059
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program. One may thus expect to improve the predic-
tive potential of the polymer structure–property mod-
els by the use of the neural net technique.

CONCLUSIONS

Two topological descriptors of polymer structure, the
Wiener number W and the complexity index K, were
selected for this study on the basis of their high sen-
sitivity to intimate details of molecular architecture.
They were shown to correlate very well with the melt
rheological properties of linear and branched mono-
disperse PEs: the zero-shear viscosity, the activation
energy, the Cross equation parameters � and �, and
the branching ratio g�. The single-variable linear and
nonlinear regression models derived are characterized
by correlation coefficients r ranging from 0.95 to 0.98,
whereas the models including two or three variables
have r � 0.99, and the standard deviations in both
cases are reasonably small. The models were addition-
ally improved by applying the neural network
method. An important result of this study is the sta-
tistical confirmation of the views that molecular
weight has much less effect on the rheology of poly-
ethylene melts than does long-chain branching.

The practical implication of the models derived lies
in their predictive power as far as the rheological
properties of monodisperse linear and 3-arm star
polymers are concerned, as exemplified in Table IV.
More generally, this study shows that topological de-
scriptors of polymer structure can provide highly sig-
nificant structure–rheology relationships with a good
predictive potential. Given the generality of the topo-
logical approach, one may expect this conclusion to be
extended to comblike and hyperbranched structures,
as well as to random distribution polyolefins, which
will be the subject of future studies. (Formulas for the
Wiener index and the complexity index K for these
highly branched polymers were derived in our recent
publications.36,37) Thus, the present study might be
regarded as part of a methodology for optimizing the
design of branched polyolefins proceeding from pre-
dictions based on topology–property models. Such a
methodology offers universal tools—topology/com-
plexity descriptors—to be applied to polymers of dif-
ferent chemistry and to identify common structural
patterns. Indeed, the regression models derived are
not universal. They are specific for the class of poly-
mers for which they are derived, and no quantitative
predictions can be made beyond this class.

The high correlations obtained with the rheological
properties of polyolefins raise the question about a
possible link of the topological formalism used and
polymer dynamics, which determines these proper-
ties. This conclusion is supported by the favorable
comparison of the statistics of our models with those
based on the molecular weights of each of the star

arms, regarded by molecular dynamics models as cru-
cial parameters. During the last few years, significant
progress has been made in the description of the dy-
namics of branched polymers. It was realized that
inner segments of the branched chains could relax
only after the relaxation of the outer segments. The
key parameters describing this hierarchy of relaxation,
called priority and seniority, are also topological in
nature.46,47 Then, the high-correlation models ob-
tained in our study could indicate a possible link of
the Wiener index and complexity index with priority/
seniority parameters. The Wiener index shows certain
similarity with these parameters in characterizing
structural patterns in polyolefins. Thus, at a given
molecular weight, and excluding linear and star poly-
mers for which all chain priorities are the same, the
Wiener index and chain priority/seniority of statisti-
cal polymers have their highest values for comb mac-
romolecules having unbranched branches, and both
decrease in hyperbranched species with the increase
in the extent of branching. Work on the quantitative
relation between these important topological descrip-
tors of polymer structure is in progress.48

The authors gratefully appreciate the work of N. Hadjichris-
tidis and L. Fetters on the synthesis of the anionic polymers
and the work of R. Mendelson and C. Garcia-Franco on the
rheological characterization of these polymers. We are in-
debted to P. Jiang and C. Garcia Franco for their comments.
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